

MPR 703575/1

MPR 703575/2

MPR 703570/0

Universal process controllers

Please read this Operating Manual before starting up the controller. Keep this manual in a place that is accessible to all users at all times. Please assist us to improve this manual. Your suggestions will be welcome.

All the necessary settings and, where required, alterations inside the unit are described in this Operating Manual. If any problems should arise during start-up, you are asked not to carry out any unauthorized manipulations on the unit. You could endanger your rights under the instrument warranty! Please contact the nearest subsidiary or the main factory in such a case.

When returning modules, assemblies or components, the regulations of EN 100 015 "Protection of electrostatically sensitive components" must be observed. Use only the appropriate ESD packaging for transport.

Please note that we cannot accept any liability for damage caused by ESD (electrostatic discharge).

1	Introduction	7
1.1	Description	. 7
1.2	Block structure	. 7
	Typographical conventions Warning signs	. 8
	Note signs Presentation	
2	Identifying the instrument version	9
2.1	Type designation	. 9
2.2	Accessories	10
3	Installation	11
3.1	Location and climatic conditions	11
3.2.2	Dimensions Type 703570/0. Type 703575/1. Type 703575/2.	11 12
3.3	Edge-to-edge mounting	13
3.4	Fitting in position	13
3.5	Cleaning the front panel	13
3.6	Removing the controller chassis	14
4	Electrical connection	15
4.1	Installation notes	15
4.2.1	Type 703570	16
	Type 703575 (portrait and landscape format)	
4.3	Isolation	21

5	Operation	23
5.1	Displays and controls	. 23
5.2	Operating modes and states	. 24
5.3	Principle of operation	. 25
5.4	Entering values and selecting settings	. 26
5.5	Altering setpoints	. 27
5.6	Manual mode	. 28
5.7	Display switching	. 29
5.8	Operating level	. 30
6	Parameter level	31
7	Configuration level 1	33
7.1	Controller	. 35
7.2	Limit comparators	. 37
7.3	Inputs	. 40
7.4	Outputs	. 45
7.5	Ramp and profile program function	. 46
7.6	Maths and logic module	. 48
7.7	Display	. 53
7.8	Logic functions	. 56
7.9	Interface	. 5 8
8	Optimisation	59
8.1	Self-optimisation	. 59
8.2	Checking the optimisation	. 60
8.3	Fuzzy parameters	61

9	Retrofitting of cards	63
10	Interfaces	67
10.1	RS422/485 interface	67
10.2	PROFIBUS-DP	68
11	Accessories	69
11.1	External relay module ER8	69
11.2	Setup program with commissioning software	70
12	Appendix	71
12.1	Technical data	71
12.2	Alarm messages and display priorities in the normal display	73
12.3	Character set for matrix display	76
12.4	Instrument features (configuration level 2)	77
	Notes for instruments with Germanischer Lloyd (GL) approval	
	1Technical data2Alarm messages	_
	3Inhibits	
	4Manual mode	
12.5.	5Additional notes	78
13	Index	81

1.1 Description

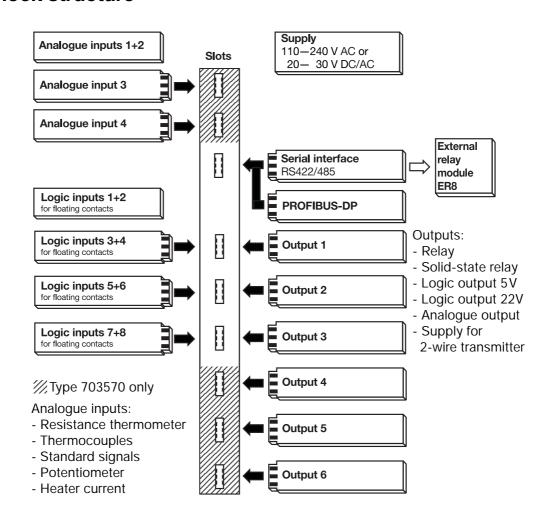
This series of universal, freely configurable process controllers is available in the formats 96mm x 96mm and 96mm x 48mm (portrait and landscape).

The instruments feature two 4-digit 7-segment displays, five or eight LEDs for indicating the switching status and operating modes, an 8-digit matrix display, as well as six keys for operation and configuration.

The controller slots can be assigned flexibly by the user, according to the block structure.

Additional functions include self-optimisation, parameter set switching, and up to eight limit comparators.

Linearisations for conventional transducers are held in the memory; a customized linearisation table can be programmed.


The process controller can be adapted to a variety of tasks with the aid of a maths module.

The instruments can be integrated into a data network via a serial interface, or can be expanded through an external relay module.

A setup program is available for easy configuration from a PC.

The electrical connection is at the rear by screw terminals.

1.2 Block structure

1 Introduction

1.3 Typographical conventions

1.3.1 Warning signs

The signs for **Danger** and **Warning** are used in this manual under the following conditions:

Danger

This sign is used when there may be danger to personnel if the instructions are disregarded or not followed accurately.

Warning

This sign is used when there may be **damage** to equipment or data if the instructions are disregarded or not followed accurately.

Warning

This sign is used when special care must be taken when handling components that are sensitive to electrostatic discharges.

1.3.2 Note signs

Note

This symbol is used when your attention is

drawn to a specific remark.

Reference

This symbol refers to additional information in other manuals, chapters or sections.

* Action

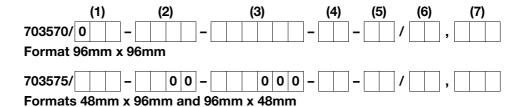
This sign refers to an action to be performed.

The individual steps are marked by this aste-

risk, e. g.

★ Press ▲ key

1.3.3 Presentation


Key combination The depiction of keys together with a plus sign means that first the **ENTER** key has to be pressed and held down, and then a further key is pressed.

<u>:</u>

Dot-matrix display Texts and messages are visualised on the dot-matrix display.

2 Identifying the instrument version

2.1 Type designation

(1) Basic type extension			
Format:			
96mm x 96mm	0		
48mm x 96mm portrait	1		
96mm x 48mm landscape	2		
Version:			
Standard with factory settings		8	
Customized programming		9	
Language for instrument texts:			
German			1
English			2
French			3

(2) Analogue input	1	2	3	4
not assigned	0	0	0	0
Universal input				
(all transducers except				
voltage -10/2/0 — 10V)	1	1	1	1
voltage -10/2/0 — 10V	2	2	2	2

(3) Output	1	2	3	4	5	6
not assigned	0	0	0	0	0	О
Relay (changeover contact)	1	1	1	1	1	1
Solid-state relay 230V 1A	2	2	2	2	2	2
Logic 0/5V	3	3	3	3	3	3
Logic 0/22V	4	4	4	4	4	4
Analogue output	5	5	5	5	5	5
Supply for 2-wire						
transmitter	6	6	6	6	6	6
Two logic inputs	7	7	7	-	-	-

(4) Supply		
110 — 240V AC -15/+10%		
48 — 63 Hz	2	3
20 — 30V DC/AC 48 — 63Hz	2	5

(5) Interface		
not assigned	0	0
RS422/485	5	4
PROFIBUS-DP	6	4
(no GL approval)		

(6) Maths and logic module)	
not available	0	0
available	0	3

(7) Approvals			
DIN 3440*	0	5	6
Underwriters Laboratories Inc. (UL)	0	6	1
Germanischer Lloyd (GL)*	0	6	2
DIN 3440 and GL*	0	6	3
DIN and UL*	0	6	4
GL and UL*	0	6	5
DIN 3440, GL and UL*	0	6	6

^{*} only for Type 703570

Delivery package:

- controller
- 2 fixing brackets
- seal
- Operating Manual B70.3570

2 Identifying the instrument version

2.2 Accessories

External relay module ER8

Supply 93 — 263V AC

Sales No. 70/00325805

(no GL approval)

External relay module ER8

Supply 20 — 53V DC/AC

Sales No. 70/00325806

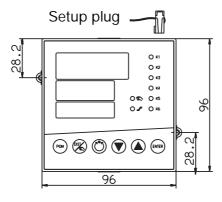
(no GL approval)

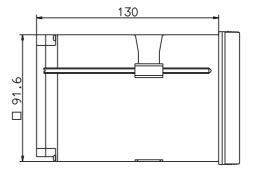
PC interface for setup program

Sales No. 70/00301315

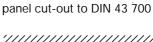
Setup program for Windows® 95/98 and NT4.0

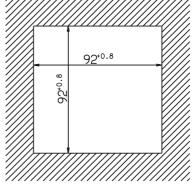
Hardware requirements:

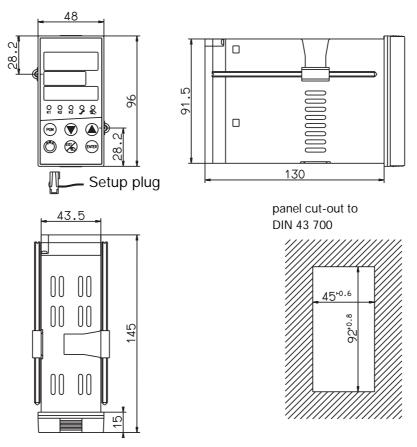

- PC-486DX-2-100
- 16 Mbyte RAM
- 15 Mbyte available on hard disk
- CD-ROM
- 1 free serial interface

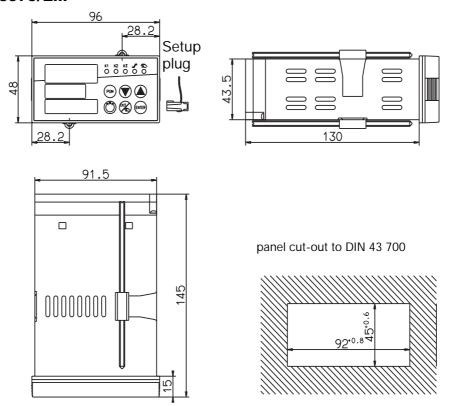

3.1 Location and climatic conditions

The instrument location must conform to the requirements specified under Technical Data. The ambient temperature at the location can be between -5 and 55 °C, at a relative humidity of not more than 95 %.


3.2 Dimensions


3.2.1 Type 703570/0...

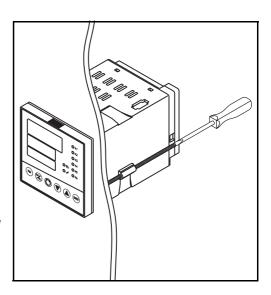

145



3 Installation

3.2.2 Type 703575/1...

3.2.3 Type 703575/2...



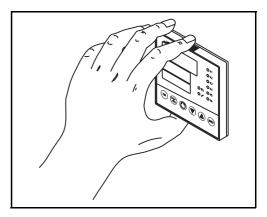
3.3 Edge-to-edge mounting

Minimum spac	ing of the panel cut	-outs
Туре	horizontal	vertical
without setup plug:		·
703570/0	11mm	30mm
703575/1 (portrait format)	11mm	30mm
703575/2 (landscape format)	30mm	11mm
with setup plug:		·
703570/0	11mm	65mm
703575/1 (portrait format)	11mm	65mm
703575/2 (landscape format)	65mm	11mm

3.4 Fitting in position

- * Fit the seal provided onto the instrument housing.
- * Insert the controller from the front into the panel cutout.
- Insert the mounting brackets from the rear of the panel into the guide slots at the sides of the housing. The flat sides of the brackets must be against the housing.
- * Place the brackets against the rear of the panel and tighten them evenly using a screwdriver.

3.5 Cleaning the front panel


The front panel can be cleaned with the usual rinsing and cleaning agents. It has limited resistance to organic solvents (e. g. methylated spirits, white spirit, P1, xylol and similar.). Do not use high-pressure cleaning equipment.

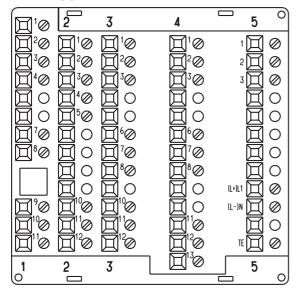
3 Installation

3.6 Removing the controller chassis

The controller chassis can be removed from the housing for servicing.

* Press the knurled areas together at top and bottom (left and right with landscape format) on the front panel and pull out the controller chassis.

When inserting the controller chassis, care must be taken that the lugs (underneath the knurled areas) snap into position.

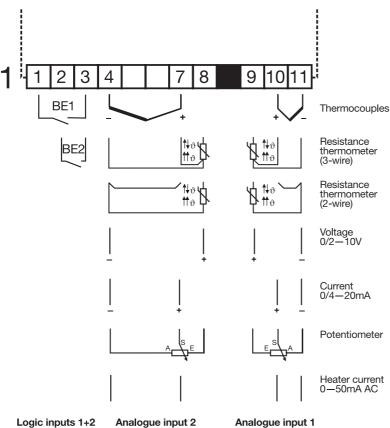

4.1 Installation notes

The choice of cable, the installation and the electrical connection of the instrument must meet the requirements of VDE 0100 "Regulations on the installation of power circuits with nominal voltages below 1000 V" or the appropriate local regulations.
The electrical connection must only be carried out by qualified personnel.
If contact with live parts is possible when working on the instrument, it has to be isolated on both poles from the supply.
A current-limiting resistor interrupts the supply circuit in the event of a short circuit. The load circuit has to be fused for the maximum relay current in order to prevent welding of the output relay contacts in the event of a short-circuit.
Electromagnetic compatibility conforms to the standards and regulations specified under Technical data.
⇒ Section 12.1 "Technical data"
Input, output and supply lines should be routed separately, not parallel to one another.
Arrange sensor and interface cables as twisted and screened cables. Do not run them close to power cables or components. Earth the screen at one end at the instrument, to the TE terminal.
Earth the instrument at terminal TE to the earth conductor. This line must have at least the same cross-section as the supply lines. Earth lines should be run in a star layout to a common earth point which is connected to the earth conductor of the supply. Do not loop the earth connections, i. e. do not run them from one instrument to another.
Do not connect additional loads to the supply terminals of the instrument.
The instrument is not suitable for installation in hazardous areas.
Apart from faulty installation, there is a possibility of interference or damage to controlled processes due to incorrect settings on the controller (setpoint, data of parameter and configuration levels, internal adjustments). Safety devices independent of the controller, such as overpressure valves or temperature limiters/monitors, should always be provided and should be capable of adjustment only by specialist personnel. Please refer to the appropriate safety regulations in this connection. Since adaptation (self-optimisation) cannot be expected to handle all possible control loops, there is a theoretical possibility of unstable parameter settings. The resulting process value should therefore be monitored for its stability.
The maximum permitted voltage difference between the inputs of the controller and TE is 30 V AC or 50 V DC

4 Electrical connection

4.2 Connection diagrams

4.2.1 Type 703570



The electrical connection must only be made by suitably qualified personnel.

The instrument version can be identified by the type code.

Additional analogue input signals			
Signal Connection like			
0—1V	0—10V		
-1to +1V	0—10V		
-10 to +10V	0—10V		
0—100mV	thermocouple		
-100 to +100 mV	thermocouple		

When a thermocouple with internal temperature compensation is wired up to the analogue inputs 1, 3 or 4, Pt500, Pt1000 or KTY must not be connected to analogue input 2.

Voltage 0/2-10V

Current 0/4—20mA

Potentiometer

Heater current 0—50mA AC

Type 703570 Interface Output 6 Output 5 (Slot 5) (Slot 6) PROFIBUS DP +5 V -20/0/4-20mA -20/0/4-20mA 20 mA B A GND -10/0/2—10V -10/0/2-10V RS485/ER8 u u RxD/RxD/ TxD TxD GND 230V/1A 230V/1A Ħ (+) (-) 5V(22V)/30mA* 5V(22V)/30mA* RS422 П П 230V/3A 230V/3A 10|11|12 2 3 3 6 8 |10|11|12 4 5 Thermocouples Thermocouples Earth the screen for the interface cable at one Resistance * Supply for Resistance end only to TE. thermometer (3-wire) thermometer 2-wire transmitter (22V) (3-wire) The output must be configu-Resistance thermometer red accordingly. Resistance \$ # ₽ ₩ϑ thermometer (2-wire) ⇒ Section 7.4 "Outputs" Ħθ (2-wire)

Analogue	input 3
(optio	on)

Voltage 0/2—10V

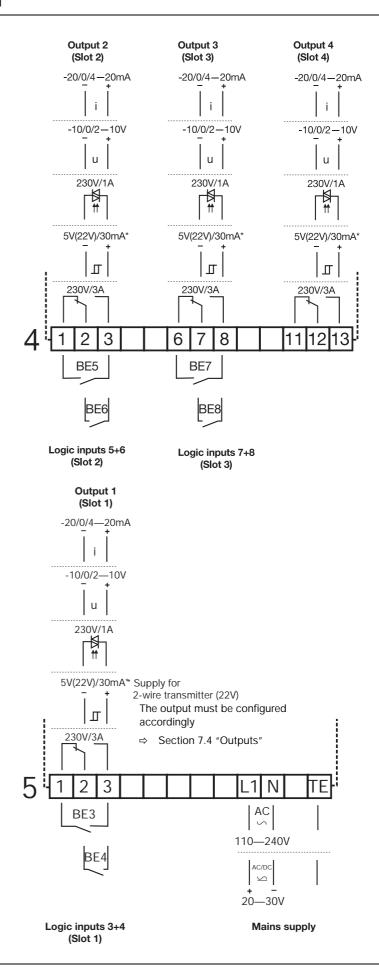
Current 0/4—20mA

Potentiometer

Heater current 0—50mA AC

Additional analogue input signals			
Signal	Connection like		
0—1V	0—10 V		
-1to +1V	0—10V		
-10 to +10V	0—10V		
0—100mV	thermocouple		
-100 to +100mV	thermocouple		

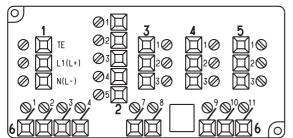
Contact protection circuit (relays):


 $56\Omega/15nF$ between common-make/common-break

Analogue input 4

(option)

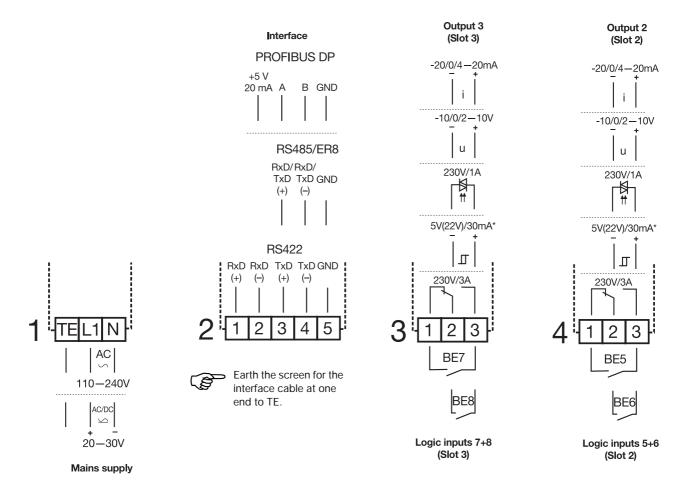
4 Electrical connection



Contact protection circuit (relays):

 $56\Omega/15$ nF between common-make/common-break

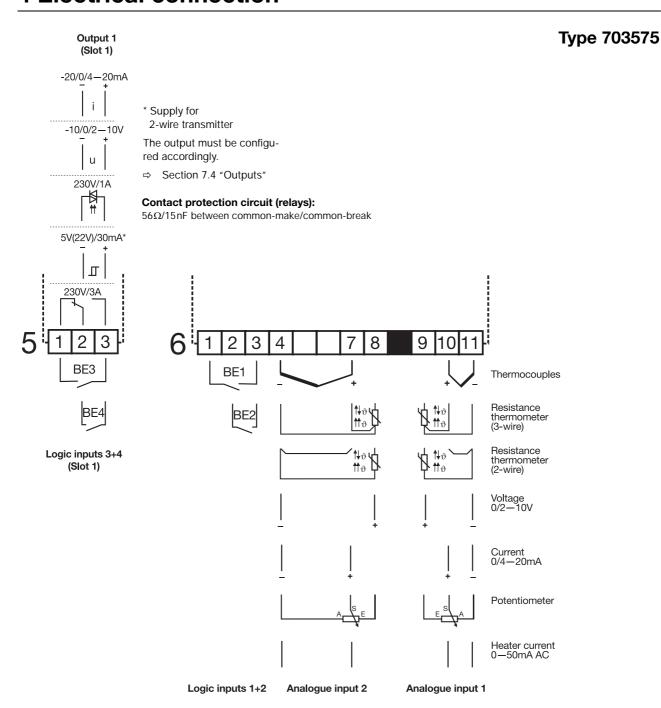
4.2.2 Type 703575 (portrait and landscape format)



The electrical connection must only be carried out by properly qualified personnel

The instrument version can be identified by the type code.

* Supply for 2-wire transmitter

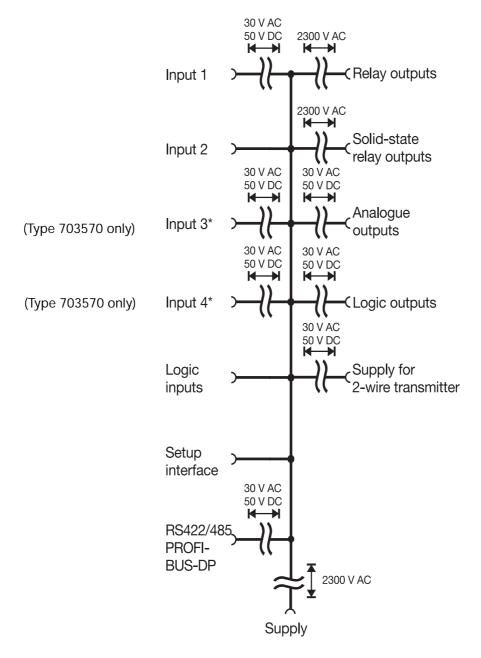

The output must be configured accordingly.

⇒ Section 7.4 "Outputs"

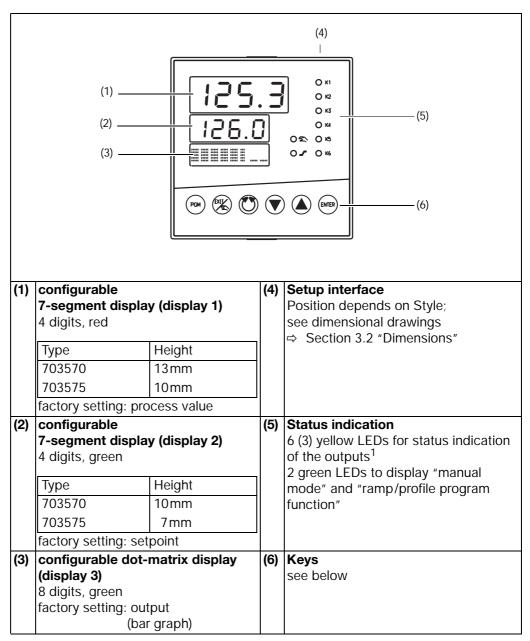
Contact protection circuit (relays):

 $56\Omega/15$ nF between common-make/common-break

4 Electrical connection


Additional analogue input signals			
Signal Connection like			
0—1V	0—10V		
-1 to +1V	0—10V		
-10 to +10V	0—10V		
0—100mV	thermocouple		
-100 to +100mV	thermocouple		

When a thermocouple with internal temperature compensation is wired up to analogue input 1, a Pt500, Pt1000 or KTY must not be connected to analogue input 2.


4.3 Isolation

For Type 703570 and Type 703575

4 Electrical connection		

5.1 Displays and controls

1. no display with analogue inputs

⇒ Section 7.7 "Display"

Key designation

Keys from left to right:

PGM for programming

Exit/Hand for programming and for manual mode¹

Automatic to start programs

Increment to increase parameter values
Decrement to decrease parameter values

Enter for programming and display switching

1. In the description below the key is shown according to its function (EXIT or 🖎).

5 Operation

5.2 Operating modes and states

Operating mode/ state	Display	Notes
Normal display	125.3 126.0 	The displays present the values according to the display configuration. ⇒ Section 5.7 "Display switching" factory setting: - process value - setpoint - output (bar graph)
Ramp and profile program function	O₹\ 0 /	A ramp or a profile is run. ⇒ Section 7.5 "Ramp and profile program function"
Manual mode	● ② →	The output is modified by hand. ⇒ Section 5.6 "Manual mode"
Self-optimisation	SCACTIVE	Self-optimisation is running. ⇒ Section 8.1 "Self-optimisation"
Alarm messages	-	⇒ Section 12.2 "Alarm messages and display priorities in the normal display"
O - LED is off; O -	LED is on	

5.3 Principle of operation

Normal display Initial status

Profile program function

Eight segments of the program function are programmed here.

This level only appears when the profile program function has been activa-

ted.

Operating level

This level can be used to program setpoints and indicate process variables.

Parameter level

The parameters at this level are used to adapt the controller to the control

loop.

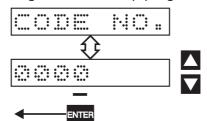
Configuration level 1

This level serves to adapt the controller to the control task.

Configuration level 2

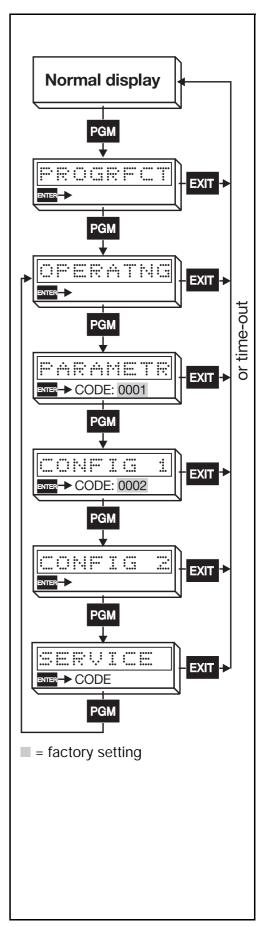
The software version and the hardware specifications of the controller are indicated here.

dicated fiere.


Service Only accessible to service personnel.

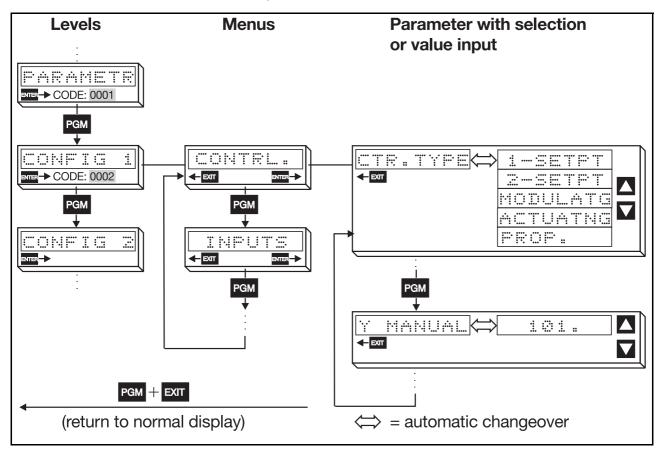
Time-out

If no key has been pressed during a configurable period of time (factory setting: 30sec), the controller automatically returns to normal display.


Code request

In order to access some levels, a code has to be entered first. The codes can be changed via the setup program.

Codes are entered digit by digit.


- ★ Enter the digit with and and
- **★** Step on to the next digit with ENTER

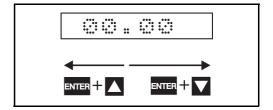
5 Operation

Levels and menus

Each level is divided into menus, thus creating a tree structure which has a selection or a value input at the end of each branch.

5.4 Entering values and selecting settings

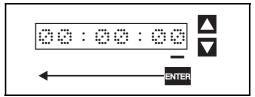
Value input


- ★ Increase the parameter value with
- ★ Decrease the parameter value with

The longer the key is pressed, the more quickly the value changes. Approx. 1sec after releasing the key, the entry is accepted automatically (display flashes briefly).

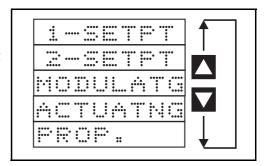
Parameters can be altered within their value range, or within the maximum values that can be displayed (e. g. 2 decimal places: -99.99 to +99.99).

Shift decimal point


- ★ Increase the decimal places with ENTER + ▲
- **★** Decrease the decimal places with ENTER + (the last digit must be 0)

Code and time input

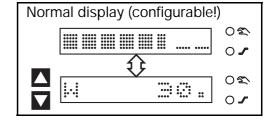
Time inputs and codes are entered digit by digit.


- ★ Increase or decrease the value (digit) with and
- * Confirm the entry and select the next digit with ENTER

Selection

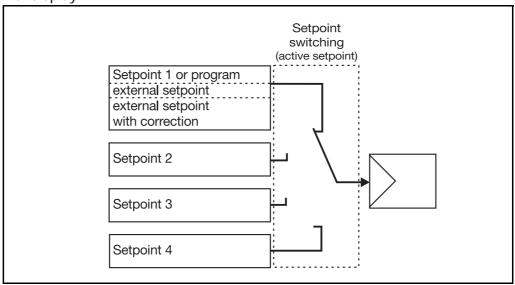
- Step upwards in the selection list with
- **★** Step downwards in the selection list with

The selection will be automatically accepted after approx. 1 sec.


5.5 Altering setpoints

The active setpoint (see setpoint switching) is altered in normal display.

★ Alter the setpoint with▲ and ▼


shift decimal point with

ENTER + ▲ and ENTER + ▼
(The entry is documented in the matrix display)

Setpoint switching

If setpoint switching is programmed, the active setpoint is altered in the normal display.

Setpoint inputs via the interface have priority.

5 Operation

Relevant settings

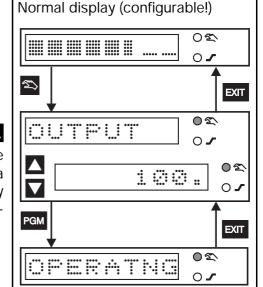
Operating level → Setpoints

Configuration level 1 → Controller → Controller inputs

Configuration level 1 → Controller → Setpoint limits

Configuration level 1 → Logic functions

5.6 Manual mode


The control loop can be opened by changing over to manual mode, and the output is then adjusted manually.

* Change to manual mode with

* Terminate manual mode with **EXIT**

▲ - open actuator

The levels can also be accessed from the manual mode. The manual mode can be inhibited.

⇒ Section 7.1 "Controller"

Relevant settings

Configuration level 1 → Controller → Controller inputs

Configuration level 1 → Controller → Manual output

Configuration level 1 → Controller → Manual mode

Configuration level 1 → Logic functions

Display switching 5.7

Two display configurations can be provided that determine the visualisation of values and process variables on the 7-segment displays and the dot-matrix display.

★ Switch display over with ENTER or automatic changeover after an adjustable interval Display switching can be deactivated.

Example Configuration Display 1: process value Display 2: setpoint 02 0 🖍 Display 3: output ENTER ENTER **Configuration 2** Display 1: analogue input 3

Relevant settings

Configuration level 1 → Display → Configuration 1+2

Display 2: analogue input 4

Display 3: maths 1

Configuration level 1 → Display → Automatic display switching

02

0 🖍

......

5 Operation

5.8 Operating level

General

Four setpoints can be indicated and altered at the operating level, in addition different process variables can be displayed.

Access the level by ...

★ pressing PGM (2x PGM with activated program function) in normal display or in manual mode

Setpoints

Setpoint 1 Setpoint 2 Setpoint 3 Setpoint 4

Process variables

Analogue input 1 Analogue input 2 Analogue input 3 Analogue input 4 Mathematics 1 Mathematics 2 Output

Parameter	Value/selection	Description
→ SETPTS → M1 → M2 → M3 → M4	0. 0. 0.	Value input within the defined setpoint limits
→ FROCESS → ANALOG 1 → ANALOG 3 → ANALOG 4 → ANALOG 4 → MATHS 1 → MATHS 2 → OUTPUT	0: 0: 0: 0: 0:	Value display

General Two parameter sets can be stored.

Access the level by ...

* pressing PGM twice (3x PGM with activated program function) in normal display or in manual mode.

Access code The level is protected by a code.

factory-set code: 0001

Select parameter set

* Select parameter set with PGM

PARAMETR > PARASET1

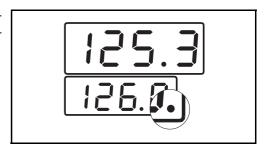
Parameters	Display	Value range	factory- set	Meaning
Controller structure	STR 1 STR 2	P, I, PD, PI, PID P, I, PD, PI, PID	PID PID	Structure 2 ¹ refers to the second output in the case of a double-setpoint controller. With modulating controllers, only PI and PID are possible.
Proportional band	XP1 XP2	0 — 9999 digit 0 — 9999 digit	0 digit 0 digit	Size of the proportional band At Xp1,2 =0 the controller structure is not effective!(Limit comparator response) With proportional controllers, Xp1,2 must be >0
Derivative time	TV1 TV2	0 — 9999 sec 0 — 9999 sec	80 sec 80 sec	Influences the differential component of the controller output signal
Reset time	TN1 TN2	0 — 9999 sec 0 — 9999 sec	350 sec 350 sec	Influences the integral component of the controller output signal
Switching cyle time	CY1	0 — 9999 sec 0 — 9999 sec	20 sec 20 sec	For a switching output, the cycle time should be selected so that no impermissible fluctuations of the process value are caused by the switched energy supply, while, at the same time, not overloading the switching devices.
Contact spacing	XSH	0 — 999 digit	0 digit	Spacing between two control contacts for double-setpoint controllers, modulating controllers and proportional controllers with integral actuator driver.
Switching differential	XD1 XD2	0 — 999 digit 0 — 999 digit	1 digit 1 digit	Differential of switching controllers for Xp = 0. y 100% Xd1, 2
Stroke time	TT	5 — 3000 sec	60 sec	Utilised stroke time of the control valve on modulating controllers and proportional controllers with integral actuator driver.
Working point	YØ	-100 to +100%	0%	Output for P and PD controllers (y = Y0 at x = w).

1. also Xp2, Tv2, Tn2; Cy2; Xd2

6 Parameter level

PARAMETR > PARASET1

Output limiting	Υı́	0 — 100%	100%	Maximum output limit
	YZ	-100 to +100 %	-100%	Minimum output limit
Minimum relay	TK1	0 — 60sec	0sec	Limitation of the switching rate on
ON time	TKE	0 — 60sec	0sec	switching outputs



The display of the parameters on the unit depend on the controller type that was selected.

⇒ Section 7.1 "Controller"

Active parameter set

When parameter set 2 is active, the decimal point is lit up on the right of display 2.

7 Configuration level 1

General

The following applies to the representation of parameters and functions on the unit:

The parameter is not displayed when

- the instrument features do not permit the function assigned to the parameter.

Example: Output 3 cannot be configured when output 3 is not available to the instrument.

the parameter is irrelevant for the function that was previously configured.
 Example: Analogue input 1 is configured to "Pt100", which means that display start / end for standard signals will not be indicated.

Access the level by ...

* pressing PGM 3 times (4x PGM with activated program function) in normal display or in manual mode.

Access code

The level is protected by a code.

factory-set code: 0002

Overview

→ Controller⇒ Page 35

 controller type control direction controller inputs

→ process value external setpoint external setpoint with correction stroke retransmission additive disturbance multiplying disturbance

setpoint limits

→ setpoint start setpoint end

manual output self-optimisation output 1+ 2 for selfoptimisation dead band fuzzy control 1 fuzzy control 2

→ Limit comparators⇒ Page 37

→ limit comparator 1—8

 function action switching differential limit value function on over/ underrange switch-on delay pulse function

LK inputs

limit comparator PV limit comparator setpoint

^{→ =} press ENTER!

7 Configuration level 1

→ Inputs ⇒ Page 40	→ analogue input 1 — 4 supply frequency unit	transducer linearisation measurement correction constant cold-junction temperature external cold-junction temperature heater current monitoring display start display end range start range end filter time constant customized recalibration	→ start value end value
→ Outputs ⇒ Page 45	→ output 1 — 6	→ function output signal zero point end value output signal on under/overrange	
→ Ramp and program function ⇒ Page 46	function ramp slope unit of slope		
→ Maths/logic ⇒ Page 48	→ mathematics 1+2	→ function variable a variable b range start range end linearisation	
	logic 1+2		
→ Display ⇒ Page 53	→ configuration 1+2 time-out automatic display switching	→ display 1—3	display value decimal point
→ Logic function ⇒ Page 56	→ logic input 1 — 8 limit comparator 1 — 8 logic output 1+2		
→ Interface ⇒ Page 58	type of protocol data format	→ baud rate parity stop bit	
	instrument address minimum response time		
→ = press ENTER !			

7.1 Controller

The following are set here: controller type and input variables of the controller, setpoint limits, conditions for manual mode, the presettings for self-optimisation and the fuzzy logic.

COMPIG 1 > CONTRL.

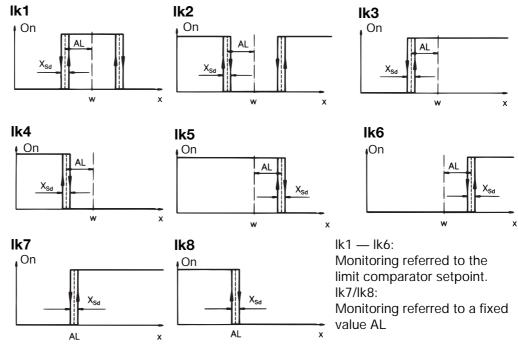
	Parameters	Value/selection	Description
Controller type Control direction	→CTR.TYPE →DIRECTN.	1-SETPT 2-SETPT MODULTNG ACTUATNG PROP. DIRECT INVERSE	single-setpoint controller double-setpoint controller modulating controller proportional controller with integral actuator driver proportional controller Direct Inverse
Inputs of the controller	→INFUTS → FV	NO FUNCT ANALOG 1	inverse inverse: The controller output Y is > 0 when the process value is smaller than the setpoint (e. g. heating). direct: The controller output Y is > 0 when the process value is larger than the setpoint (e. g. cooling). no function* analogue input 1**
external setpoint external setpoint with correction stroke retransmission additive disturbance multiplying disturbance	→ EXTSET → EXTCORR → Y RETRM → ADD DIST → MUL DIST	AMALOG 2 AMALOG 4 MATHS 1 MATHS 2	analogue input 2 analogue input 3 analogue input 4 Mathematics 1 Mathematics 2 Defines from which analogue inputs or maths functions the controller receives the signals. Stroke retransmission has to be configured in the case of a proportional controller with integral actuator driver! External setpoint with correction: External setpoint + setpoint 1 = present setpoint The external setpoint can be corrected upwards or downwards from the keys (setpoint 1). The present setpoint appears on the (LED) display. * factory-set for all, except process value ** factory-set for process value

Factory settings are shown **bold**.

7 Configuration level 1

COMFIG 1 \rightarrow CONTRL.

	Parameters	Value/selection	Description
Setpoint limits setpoint start setpoint end	→WLIMITS → STARTVAL → END VAL	0. 400.	-1999— 0 to +9999 -1999— 400 to +9999 The setpoint limits are ineffective with setpoint input via the interface. For external setpoint with correction, the correction value is limited.
Manual output	→Y MANUAL	101.	-100—100 101 = last output Defines the output after changing over to manual mode.
Manual mode	→MAN.MODE	ENABLED INHIBTD	enabled inhibited
Self-optimisation	→TUNE	ENABLED INHIBTD	enabled inhibited
Output 1 for self-optimisation	→TUNEOUT1	RELAY SSRELAY ANOUTPUT	Relay solid-state relay and logic output analogue output
			type of controller output 1 on self- optimisation
Output 2 for self-optimisation	→TUNEOUT2	RELAY SSRELAY ANOUTPUT	Relay solid-state relay and logic output analogue output type of controller output 2 on self- optimisation
Dead band	→DEMDBAND	O :	O—100 digit serves to minimise the output movement within the dead band; e. g. with noisy signals. Dead band y The deadband is only effective with controller structures with I- component.
Fuzzy control 1	→ F⊂1	0.	0 —100 0 = fuzzy control off Intensity of the fuzzy signal added to the controller output to improve the control quality.
Fuzzy control 2	→FCE	Eactory settings as	0— 30 —100 Influences the controller parameters during activated fuzzy module to improve the control quality.


Factory settings are shown **bold**.

7.2 Limit comparators

Limit comparators (limit monitors, limit contacts) can be used to monitor an input variable (limit comparator process value) against a fixed limit value or another variable (limit comparator setpoint). When a limit is exceeded, a signal can be output or an internal controller function initiated.

Limit comparator functions

Limit comparators can have different switching functions.

w = limit comparator setpoint, AL = limit,

 $x = limit comparator process value, X_{Sd} = differential$

COMPIG : >LIMITE

Limit comparator 1
•••
Limit comparator 8

Parameters	Value/selection	Description
→LIMITC1	-	Configuration of limit comparators as in example "limit comparator 1"
	-	as in example "ilmit comparator 1" below.
→LIMITCS	-	

Factory settings are shown bold.

COMPIG : >LIMITC >LIMITC:

Function

Parameters	Value/selection	Description
→FUNCTION	NO FUNCT LK1	no function function lk1
	LKS	 function lk8

CONFIG 1 >LIMITC >LIMITC1

Action

Switching differential X_{sd} Limit value AL Function on over/underrange

Parameters	Value/selection	Description
→ACTION	ABSOLUTE RELATIVE	absolute relative
→DIFFERTL	1.	0— 1 —100 digit
→LIMIT	₽.	-1999— 0 to +9999 digit
→ RANGEFCT	RELDE-EN RELENERG	relay de-energised relay energised

If a limit comparator is connected to an output, then the setting "Output signal on over/underrange" of the output has priority.

⇒ Section 7.4 "Outputs"

Switch-on delay Pulse function

Limit comparator

limit comparator process value limit comparator

inputs

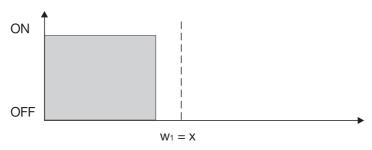
setpoint

→ DELAY	₽.	0 — 9999sec
→ FULSEFCT	Ø.	-1— 0 to +9999s
		The limit comparator is automatically reset after an adjustable interval.
		-1= The limit comparator has to b reset with the logic function (all displays off)
→ IMPUTS	ANALOG 1	analogue input 1*
→ PV LK	 ANALOG 4	 analogue input 4
→ SET LK	MATHS 1 MATHS 2	mathematics 1 mathematics 2
		process value
	SETPOINT RAMPENDV	setpoint (present)** ramp end value
	CHTRLDEV	control deviation
	OUTPUT	output
		* factory-set for LK process value ** factory-set for LK setpoint

Absolute

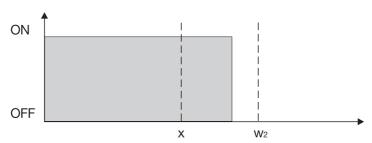
At the time of the alteration, the limit comparator acts in accordance with its function.

Relative

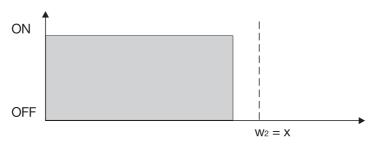

The limit comparator is in the OFF status.

An alteration of the limit or the (limit comparator) setpoint could cause the limit comparator to switch ON. Such a reaction will be suppressed, and this condition maintained until the (limit comparator) process value has moved away from the switch-on region (grey area).

Example:


Monitoring the (controller) process value x with function lk4 Setpoint alteration $w_1 \rightarrow w_2$

a) Initial status


b) Status at the time of the alteration.

The limit comparator remains on "OFF" although the process value is within the switch-on region.

c) Control stabilised

The limit comparator again operates according to its function.

This function also prevents a limit comparator from being triggered during the start-up phase.

7.3 Inputs

The analogue inputs are configured here.

COMPIG 1 - IMPUTS

Analogue input 1

...

Analogue input 4
Supply frequency

Unit

Parameters	Value/selection	Description
→AMALOG 1		Configuration of the analogue inputs as in the example "analogue input 1"
		below.
→AMALOG 4		
→ PMRFREG	EØ HZ	50Hz
	eg hz	60 Hz
→UNIT		°C
		°F

Factory setting are shown **bold**.

CONFIG 1 → IMPUTS → MMMLOG 1

Transducer

Parameters	Value/selection	Description
→PROBE	NO FUNCT	no function*
	RTD	resistance thermometer**
	TC INTRN	thermocouple
		(internal cold junction)
	TC EXTRN	thermocouple (external cold junction)
	TC CONST	thermocouple (constant cold junction)
	RESTRANS	potentiometer
	HEATCURR	heater current 0—50mA AC
	0 - ZOmA	0—20mA
	0 - 1 V	0—1V
	0 -100mV	0—100mV
	-1 - 1	-1to +1V
	+/-100mV	-100to +100mV
	4 - ZömA	4—20mA
	0 - 104	0—10V
	2 - 184	2—10V
	+/-187	-10Vto +10V
		* factory-set on analogue input 2, 3, 4
		** factory-set on analogue input 1
		For heater current, the heater current monitoring of the output must also be configured (see "heater current monitoring" below).

The selection of the transducers depends on the hardware configuration of the analogue inputs. -10/0/2 - 10V will only be indicated with the appropriate hardware configuration.

⇒ Section 9 "Retrofitting of cards"

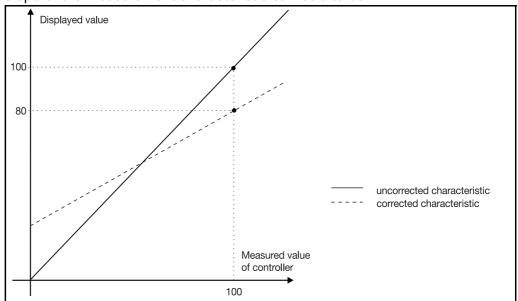
CONFIG 1 → IMPUTS → AMALOG 1

	Parameters	Value/selection	Description
Linearisation	→ LINTAE	LINEAR PT100 PT1000 PT500 PT50 CU50 KTY PTK9	Iinear Pt 100 Pt 1000 Pt 500 Pt 500 Cu 50 KTY (1kΩ at 25°C)* Pt K9 Ni 100 Fe-Con J NiCr-Con E NiCr-Ni K NiCrSi-NiSi N Cu-Con T Pt30Rh-Pt6Rh B Pt13Rh-Pt R Pt10Rh-Pt S Cu-Con U Fe-Con L customized linearisation W5Re-W26Re
Measurement correction	→OFFSET	• ·	-1999—0 to +9999 digit Measurement correction can be used to correct a measured value by a certain amount upwards or downwards. Examples: measured displayed value 294.7 +0.3 295.0 295.3 -0.3 295.0 The controller uses the corrected value (= displayed value) for its calculation. This value does not correspond to the actually measured value. If incorrectly applied, this can result in impermissible values of the control variable.

CONFIG 1 \rightarrow INFUTS \rightarrow ANALOG 1

	Parameters	Value/selection	Description
Constant	→CLITEMP	SØ.	0— 50 —100 digit
cold-junction temperature for thermocouples			Temperature of the cold-junction thermostat
External cold-junction	→EXTTEMP	ANALOG 1	Analogue input 1
temperature for thermocouples		ANALOG 4	Analogue input 4
			Measurement of the cold-junction temperature with a temperature probe.
Heater current monitoring (output)	→HEATCMON	NO FUNCT OUTPUT1	no function Output 1
,		OUTPUT6	Output 6
			The heater current is evaluated using a current transformer with a standard output signal; it can be monitored by linking the analogue input to a limit comparator. The measurement is always made when the heating contact is closed. The measured value is retained until the next measurement.
Display start	→DSPLSTRT	0.	-1999— 0 to +9999 digit
Display end	→DISPLEND	100.	-1999— 100 to +9999 digit
			On transducers with standard signal and on potentiometers, a displayed value is assigned to the actual signal. Example: 0 — 20mA ≜ 0 — 1500°C.
			The range of the physical signal can be 20% wider or narrower without signalling out-of-range.
Range start	→ RNGESTRT	-1999.	-1999 to +9999 digit
Range end	→RANGEEND	9999.	-1999 to +9999 digit
			When the measuring range is restricted, the controller will switch to the response defined for going out-of-range at an earlier point.
		Factory cottings or	Example: Pt100 (range: -200 to +850°C). An alarm message is to be output for temperatures outside the range 15 — 200°C. → range start: 15 range end: 200

COMFIG 1 → IMPUTS → AMALOG 1


	Parameters	Value/selection	Description
Filter time constant	→FILTER	0.6	0 —0.6 —100 sec
			To adjust the digital input filter (Osec = filter off). At a signal jump, 63% of the changes are registered after 2 x filter time constant. If the filter time constant is large: - high damping of disturbance signals - slow reaction of process value indication to PV changes - low limit-frequency (2nd order low-pass filter)
Customized recalibration	→RECAL		
Start value	→ STARTVAL	Ø.	-1999— 0 to +9999 digit
End value	→ ENDVALUE	1:	-1999— 1 to +9999 digit (for explanation, see below) factory-set access code: 0004
			In contrast to all other settings, input of the start and end values is linked to the present measured value at the corresponding measurement input. These values cannot simply be read in by another instrument.

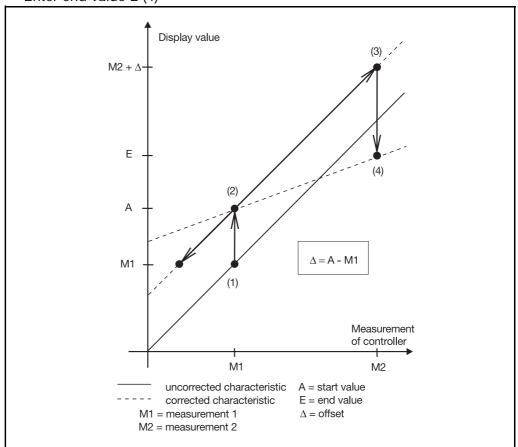
Factory settings are shown **bold**.

Customized recalibration

A signal is processed electronically (conversion, linearisation ...) to produce a measured value via the analogue inputs of the controller. This measured value enters into the calculations of the controller and can be visualised on the displays (measured value = indicated value).

This fixed relationship can be modified if required, i. e. the position and the slope of the measurement characteristic can be altered.

Procedure


Apply two measurement points ((1), (3)), one after another, to the controller; they should be as far apart as possible.

At these measurement points, enter the required display value (start value, end value) in the controller. A reference instrument is most convenient for determining the measured values M1 and M2.

Measurement conditions must remain stable during programming.

Programming

- * Move to measurement point (1)
- * Enter start value (2) 1
- * Move to measurement point (3)
- * Enter end value E (4) 1

If recalibration is carried out without reference instrument, the offset Δ must be taken into account when moving to measurement point (3).

To cancel recalibration, the start and end values have to be programmed to the same value. This sets the start value to 0 and the end value to 1.

Any subsequent recalibration will otherwise be based on the corrected characteristic.

1. If start value=0 or end value =1 is to be set, then the value must first be altered using \triangle or ∇ to enable correction.

7.4 Outputs

The outputs are configured here.

COMFIG 1 > OUTPUTS

Output 1

• • • •

Output 6

Parameters	Value/selection	Description
→CUTFUT1		Configuration of the outputs as shown in the example "Output 1"
	••••	Snown in the example "Output 1" below.
→ OUTPUT6	••••	

Factory settings are shown **bold**.

CONFIG 1 → OUTPUTS → OUTPUT1

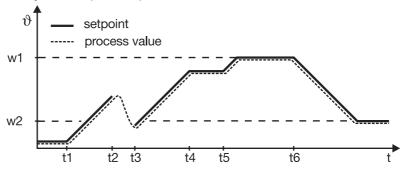
	LUNTIU I JUUITUIS JUUITUII			
	Parameters	Value/selection	Description	
Function	→FUNCTION	NO FUNCT ANALOGI	no function* analogue input 1	
		ANALOGA MATHS 1 MATHS 2 FV SETPOINT RAMPENDV CNTRLDEV	analogue input 4 mathematics 1 mathematics 2 process value setpoint ramp end value control deviation output	
		W1 W4 CTRLOUT1 CTRLOUT2 VALUE XY OUT LK1	setpoint 1 setpoint 4 controller output 1** controller output 2 address value limit comparator output 1	
		OUT LKS LOGIN Bi	limit comparator output 8 logic input 1	
		LOGIN B8 LOGIC 1 LOGIC 2 MAN.MODE TRNSMITT	logic input 8 logic 1 logic 2 manual mode supply for 2-wire transmitter	
			* factory-set on all outputs except output 1 ** factory-set on output 1	
Output signal for analogue output	→SIGNAL	-10- 10V 0 - 20mV	0 — 10V 2 — 10V -10 to +10V 0 — 20mA 4 — 20mA -20 to +20mA	

CONFIG 1 → OUTPUTS → OUTPUT1

Zero for analogue signals End value for analogue signals End value for analogue signals Figure 100 to +9999 digit -1999 — 100 to +9999 digit -1999 — 100 to +9999 digit A physical output signal is assigned to the value range of an output variable. Example: Setpoint 1 (value range: 150—500°C) is to be output via the analogue output (0—20mA). i.e.: 150 — 500°C ≜ 0 — 20mA zero: 150/end value: 500 For prop. Controller outputs for cooling. For prop. Controllers with direct action (e.g. cooling) or 2-setpoint controllers, the following settings have to be predefined: zero: 0 / end value: -100 Output signal for over/underrange Output signal for over/underrange I the output is a controller	Parameters	Value/selection	Description
analogue signals End value for analogue signals FINIVALUE 100 = -1999 — 100 to +9999 digit A physical output signal is assigned to the value range of an output variable. Example: Setpoint 1 (value range: 150-500°C) is to be output via the analogue output (0—20mA). i.e.: 150 — 500°C ≜ 0 — 20mA zero: 150/ end value: 500 Setting for controller outputs for cooling. For prop. controllers with direct action (e.g. cooling) or 2-setpoint controllers, the following settings have to be predefined: zero: 0/end value: -100 Output signal for over/underrange → FANGEFCT □ = 0—101° 101 = last output signal The output produces a defined signal. □ If the output is a controller output, the controller switches over to manual mode and produces an output of 0% or the actuator is closed (modulating controller). ⇒ Section 7.1 "Controller"			•
A physical output signal is assigned to the value range of an output variable. Example: Setpoint 1 (value range: 150—500°C) is to be output via the analogue output (0—20mA). i.e.: 150 — 500°C △ 0 — 20mA zero: 150/end value: 500 Setting for controller outputs for cooling. For prop. controllers with direct action (e.g. cooling) or 2-setpoint controllers, the following settings have to be predefined: zero: 0/end value: -100 Output signal for over/underrange → FANGEFCT □ □ 101* 101 = last output signal The output produces a defined signal. If the output is a controller output, the controller switches over to manual mode and produces an output of 0% or the actuator is closed (modulating controller). ⇒ Section 7.1 "Controller"	→STARTVAL 	0 .	-1999 — 0 to +9999 digit
A physical output signal is assigned to the value range of an output variable. Example: Setpoint 1 (value range: 150—500°C) is to be output via the analogue output (0—20mA). i.e.: 150 — 500°C ≜ 0 — 20mA zero: 150/end value: 500 Setting for controller outputs for cooling. For prop. controllers with direct action (e.g. cooling) or 2-setpoint controllers, the following settings have to be predefined: zero: 0 / end value: -100 Output signal for over/underrange Output signal for over/underrange If the output is a controller output, the controller switches over to manual mode and produces an output of 0% or the actuator is closed (modulating controller). □ Section 7.1 "Controller"	 →ENDVALUE	100.	-1999 — 100 to +9999 digit
over/underrange 101 = last output signal The output produces a defined signal. If the output is a controller output, the controller switches over to manual mode and produces an output of 0% or the actuator is closed (modulating controller). ⇒ Section 7.1 "Controller"			variable. Example: Setpoint 1 (value range: 150—500°C) is to be output via the analogue output (0—20mA). i.e.: 150 — 500°C ≜ 0 — 20mA zero: 150 / end value: 500 Setting for controller outputs for cooling. For prop. controllers with direct action (e.g. cooling) or 2-setpoint controllers, the following settings have to be predefined:
0 = off, 1 - 100 = on	→ FANGEFCT	○ .	101 = last output signal The output produces a defined signal. If the output is a controller output, the controller switches over to manual mode and produces an output of 0% or the actuator is closed (modulating controller). ⇒ Section 7.1 "Controller" * for switching outputs:

Factory settings are shown **bold**.

7.5 Ramp and profile program function


The ramp or profile program function is activated here.

COMPIG 1 → RAMP

	Parameters	Value/selection	Description
Function	→FUNCTION	NO FUNCT RAMP PROGRECT	no function ramp function profile program function
Ramp slope	→SLOPE	0.	0 —999
Unit of slope	→UNIT	DEGC/MIN DEGC/HR DEGC/DAY	degree Celsius/minute degree Celsius/hour degree Celsius/day

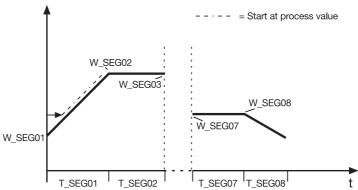
Ramp function

A rising or a falling ramp function can be implemented. The ramp end-value is determined by the setpoint input.

t1 power on (w1 active)

t2-t3 power failure/manual mode/probe break

t4-t5 ramp stop


t6 setpoint switching to w2

The ramp function is interrupted on a probe break or for manual mode. The outputs react as for over/underrange (configurable).

Profile program function

It is possible to produce a profile program with up to eight segments. When this function is activated, an additional level (FFCEFCT) appears on the screen at which the eight segment setpoints ($\mathbb{H} \subseteq \mathbb{G} \subseteq \mathbb{I} = \mathbb{H} \subseteq \mathbb{G} \subseteq \mathbb{I}$) and the eight segment times ($\mathbb{T} \subseteq \mathbb{G} \subseteq \mathbb{I} = \mathbb{T} \subseteq \mathbb{G} \subseteq \mathbb{I}$) are programmed.

The program starts at the process value or the program start (adjustable via the setup program only!). When starting at the process value, the profile is searched to find a setpoint that corresponds to the process value at the instant of the start. The program sequence starts at this point. If the process value is outside the profile, a start is made at the first program segment. With segments that are not required, the segment time must be 0.

Starting the program

* Start and cancel program with O or via the logic function

Holding the program

★ Hold and continue program with or via the logic function

7.6 Maths and logic module

This menu is shown only with enabled maths and logic module.

COMPIG 1 > MATHELOG

Mathematics 1 Mathematics 2 Logic 1

Logic 2

Parameters		Value/selection	Description
→MATHS	1		Configuration of mathematics as shown in example "Maths 1" below.
→MATHS :	: :		snown in example "Maths 1" below.
→LOGIC	1	NO FUNCT FORMULA	no function logic formula (setup program)
→LOGIC :		NO FUNCT FORMULA	no function logic formula (setup program)

Factory settings are shown **bold**.

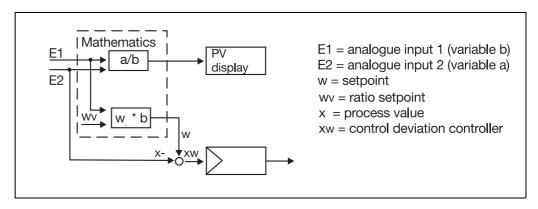
CONFIG 1 → MATHSLOG → MATHS 1

	Parameters	Value/selection	Description
Function	→FUNCTION	NO FUNCT DIFFERMC RATIO HUMIDITY FORMULA	no function difference (a-b) ratio (a/b) humidity (a;b) maths formula (setup program)
Variable a	→ 以商民 商	ANALOGI ANALOG4 MATHS 1 MATHS 2	analogue input 1 analogue input 4 mathematics 1 mathematics 2
Variable b	→VAR B	ANALOGI ANALOGE ANALOGE ANALOGE MATHS I MATHS 2	analogue input 1 analogue input 2 analogue input 3 analogue input 4 mathematics 1 mathematics 2
Range start	→ RMGESTRT	-1999.	-1999 to +9999 digit
Range end	→ RANGEEND	9999.	-1999 to +9999 digit Definition of a value range for the result of a mathematical calculation. If the value range is infringed (above or below), an out-of range condition is signalled.

CONFIG 1 → MATHSLOG → MATHS 1

Linearisation

Parameters	Value/selection	Description
→LINTAB	LINEAR	linear
	FT100	Pt 100
	PT1000	Pt 1000
	FTEGG	Pt 500
	FTED	Pt 50
	CUEO	Cu 50
	KTY	KTY
	FTKS	Pt K9
	MILOO	Ni 100
	TE TPE	Fe-Con J
		NiCr-Con E
	TE THE K	NiCr-Ni K
	TE THE N	NiCrSi-NiSi N
		Cu-Con T
	TC TPE B	Pt30Rh-Pt6Rh B
	TC TPE R	Pt13Rh-Pt R
	TC TPE S	Pt10Rh-Pt S
	TC TPE U	Cu-Con U
		Fe-Con L
	CUST LIN	customized linearisation
	WERE WES	W5Re-W26Re
	WERE WEE	W3Re-W25Re
	MBRE WZS	W3Re-W26Re


Factory settings are shown **bold**.

Ratio control

The control is always based on variable a.

The maths module forms the ratio of the measurements a and b (a/b) and produces the setpoint for the controller. The ratio of the measured values a and b can be called up and indicated via the "Maths 1" or "Maths 2" functions.

The required ratio a/b is programmed in the setpoint input as setpoint (ratio setpoint).

Humidity control

The humidity controller receives the process value from a psychrometric humidity probe through the mathematical linkage of wet bulb and dry bulb temperatures.

Variable a - dry bulb temperature Variable b - wet bulb temperature

Formula input

- The formula character string consists of ASCII-characters and has a maximum length of 70 characters.
- The formula can only be entered in the setup program.
- The formulae can be entered freely according the the usual mathematical rules.
- Spaces can be inserted in the formula character string without restriction.
 No spaces are allowed within function designations, variable names and constants.

Mathematical formula

Mathematical signs and functions

Priority	Mathematical sign/function	Note
high	()	brackets
	SQRT, MIN, MAX, LOG, LN, SIN, COS, TAN, ABS, EXP, INT, FRC	functions
V	**	exponent (x ^y)
	+, -	sign
•	*, /	multiplication, division
low	+, -	addition, subtraction

Variables

Variable name	Note	
E1	analogue input 1	
 E4	analogue input 4	
M1 M2	mathematics 1 mathematics 2	
X	process value	
WR	controller setpoint	
WE	ramp end value	
XW	control deviation	
Υ	output	
W1	setpoint 1 (operating level)	
 W4	setpoint 4 (operating level)	
YH	output heating	
YK	output cooling	
ADRA	storage address (analogue)	
TEMP	temperature at terminals	
ТО	sampling time	
RXK1 RXK2	controller output 1 controller output 2	

Variable name	Note
ADRZ	storage address: time
ADRB	storage address (binary)
LK1	output limit comparator 1
LK8	output limit comparator 8
B1	logic input 1
 B8	logic input 8
L1 L2	logic 1 logic 2
HAND	manual mode

Functions

Syntax	Function
SQRT(a)	square root of a Examples: SQRT(E2) SQRT(13.5+E3)
MIN (a1, a2)	returns the smallest value of a series of arguments Examples: MIN(3, 7) (returns the value 3) MIN(E1, E2, E3, 0.1)
MAX (a1, a2)	returns the largest value of a series of arguments Examples: MAX(3, 7) (returns the value 7) MAX(E1, E2, E3, 0.1)
LOG(a)	logarithm to base 10 Examples: LOG(1000) (returns the value 3) LOG(E1/100)
LN(a)	logarithm to base e Examples: LN(2.71828128) (returns the value 1) LN(E1/100)
SIN(a)	sine of a a in degrees (0 — 360°C) Examples: SIN(90) (returns the value 1) SIN(E1*360/100)
COS(a)	cosine of a a in degrees (0 — 360°C) Examples: COS(180) (returns the value -1) COS (E1*360/100)
TAN(a)	tangent of a a in degrees (0 — 360°C) Examples: TAN(45) (returns the value 1) TAN(E1*45/100)
ABS(a)	absolute value of a Examples: ABS(-12) (returns the value 12) ABS(13.5+E3)

Syntax	Function	
EXP(a)	exponential function e ^a Examples: ÊXP(1) (returns the value 2.718) EXP(E1/100)	
INT(a)	integer portion of a Examples: INT(8.3) (returns the value 8) INT(E1)	
FRC(a)	decimal portion of a Examples: FRC(8.3) (returns the value 0.3) FRC(E1)	

Logic formula

Logic operators

Priority	Operator	Note
high	()	brackets
	NOT, !	negation
V	AND, &	AND linkage
▼	XOR, ^	exclusive OR linkage
low	OR, ¦	OR linkage

Variables

Variable names	Note
RXK1 RXK2	controller output 1 controller output 2
ADRB	storage address (binary)
Lk1	output limit comparator 1
LK8	output limit comparator 8
B1	logic input 1
 B8	logic input 8
HAND	manual mode

Edge recognition

Edge	Note
1	variable is "TRUE" only with rising edge (e. g. /B1)
١	variable is "TRUE" only with falling edge (e. g. \B1)

Constants

Constant name	Note
TRUE	logic 1
FALSE	logic 0

Enabling maths and logic module

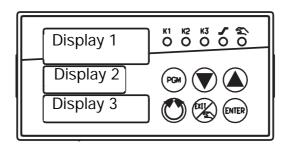
The maths and logic module can be enabled through a code via the setup program.

⇒ Extras → Enabling extra Codes

7.7 Display

The two display configurations are set here, as well as the time-out during configuration at the levels.

COMFIG 1 → DISPLAY


Configuration 1
Configuration 2

Time-Out

Automatic display switching

Parameters	Value/selection	Description
→DSFCONF1		Configuration of the displays as
→DSFCONF2		shown in the example "Configuration 1" below.
→TIMEOUT	30.	0—30—9999 sec 0 = time-out OFF Interval after which an automatic return to normal display occurs if no key is pressed.
→SCROLL	0.	-1— 0 —9999 sec 0 = automatic changeover OFF -1 = changeover via keypad is not possible Interval between the changeover of the two display configurations.

Assignment of the displays

CONFIG 1 \rightarrow DISPLAY \rightarrow DSPCONF1

	Parameters	Value/selection	Description
Display 1 Display value	→DISPLAY1 → DISPLVAL	NO FUNCT ANALOG 1 ANALOG 4 MATHS 1 MATHS 2 PV SETPOINT RAMPENDV CNTRLDEV OUTPUT VALDISPL	no function analogue input 1 analogue input 4 mathematics 1 mathematics 2 process value setpoint (present) ramp end value control deviation output display of a storage address value
Decimal point	→ DECPOINT	XXXX.	XXXX.—X.XXX
Display 2 Display value	→DISPLAY2 → DISPLVAL	MO FUNCT ANALOG 1 ANALOG 4 MATHS 1 MATHS 2 FV SETPOINT RAMPENDV CNTRLDEV OUTPUT VALDISPL	no function analogue input 1 analogue input 4 mathematics 1 mathematics 2 process value setpoint (present) ramp end value control deviation output display of a storage address value
Decimal point	→ DECPOINT	XXXX.	XXXXX.XXX

CONFIG 1 → DISPLAY → DSPCONF1

Display	3
Display	value

Parameters	Value/selection	Description
→DISPLAYB → DISPLVAL	NO FUNCT ANALOG 1 ANALOG 4 MATHS 1 MATHS 2 PV SETPOINT RAMPENDV CNTRLDEV OUTPUT VALDISPL LIMITC BARG Y BARG Y BARG XM TXTDISPL	no function analogue input 1 analogue input 4 mathematics 1 mathematics 2 process value setpoint (present) ramp end value control deviation output display of a storage address value limit comparators (switching states) bar graph output bar graph control deviation text display switching states of limit comparators: 8 7 6 5 4 3 2 1 bar graph output: 1-setpoint ctrl. 0% 100% and prop. ctrl.
→ DECFOINT	XXXX :	XXXX.—X.XXX

Decimal point

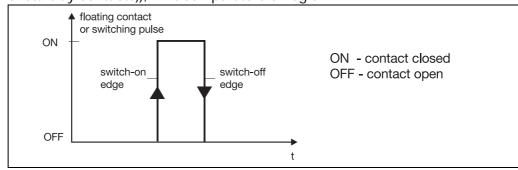
Factory settings are shown **bold**.

Decimal point

If the value to be displayed can no longer be represented with the programmed decimal place, then the number of decimal places will be automatically reduced. If, subsequently, the measurement becomes smaller then the number will be increased to the programmed decimal point value.

7.8 Logic functions

Functions are assigned here to the logic signals of the logic inputs, limit comparators and the logic module.


COMPIG 1 - LOGICECT

	Parameters	Value/selection	Description
Logic input 1	→LOGIN Bi	NO FUNCT	no function
***		TUMESTRI	start self-optimisation
Logic input 8	→LOGIN B8	TUMESTOR	cancel self-optimisation
-		MAN.MODE	changeover to manual mode
Limit comparator 1	→OUT LK1	MANINHBT RAMPSTOR	manual mode inhibit
•••		RAMP OFF	ramp stop/profile programm stop ramp off/profile programm abort
Limit comparator 8	→OUT LKS	W SMITCH	setpoint switching
Logic 1	→LOGIC 1	X SWITCH	process value switching
_	→LOGIC Z		parameter set switching
Logic 2		KEYINHBT	key inhibit
		LEVINHET	level inhibit
		TXTDISFL	text display*
		DISPLOFF	all displays off/acknowledgement of limitcomparators
			* A maximum of 10 texts are input and assigned to the logic functions in the setup program
			The functions are active when the contact is closed or the switching status is "ON".
			All displays off: - all displays are switched off - limit comparators are acknowl- edged
			Text display and all displays off: response according to priority list

Factory settings are shown **bold**.

Switching action

The logic functions are activated via the logic inputs (floating contacts (switches/relay contacts)), limit comparators or logic.

The functions are divided into two groups:

Edge-triggered functions

The logic function reacts to switch-on edges.

The following functions are edge-triggered:

- start/stop self-optimisation
- acknowledge limit comparators

State-triggered functions

The logic function reacts to ON or OFF switching states.

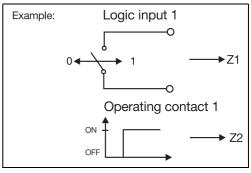
- all other functions

Combined logic functions

A combination of two control variables (logic inputs, limit comparators and logic) is used to implement the functions setpoint/process value switching.

Any control variable can be selected. The states Z1 — Z2 are assigned to the control variables in descending order of the control variables (see list on the right).

Control variable		State
Logic input 1		
•		
Logic input 8 Limit comparator 1	>	Z1 Z2
Limit comparator 8 Logic 1 Logic 2		


Example:

The process value is to be selected via one logic input and the state of one limit comparator.

This results in the following assignment:

Z1 - logic input 1

Z2 - limit comparator 1

Setpoint switching	Process value switching	Z2	Z1
setpoint 1/external setpoint/ program	configured controller process value	0	0
setpoint 2	analogue input 2	0	1
setpoint 3	analogue input 3	1	0
setpoint 4	analogue input 4	1	1

0 = contact open /OFF

1 = contact closed /ON

If switching between two setpoints or process values only is required, then only one logic function has to be configured.

If more than two logic functions are configured to setpoint switching (process value switching), then only the first two (see list "Control variable - State") are significant.

7.9 Interface

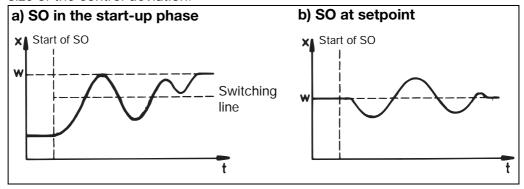
COMPIG 1 - INTERFCE

	Parameters	Value/selection	Description
Protocol type	→PROTOCOL	MODBUS MODINT	MODbus/Jbus MODbus int
Data format Baud rate	→DATAFMT → BAUDRATE	1200 2400 4800 9600 1920	1200 baud 2400 baud 4800 baud 9600 baud 19200 baud
Parity	→ PARITY	MOME ODD EVEN ZERO	no parity odd parity even parity zero parity
Stop bit	→ STOPBIT	1 2	1 stop bit 2 stop bits
Unit address	→UNITADDR	Ø.	0 —1 —254
Minimum response time	→MIN TIME	.	0 —500msec Minimum period of time that elapses between the request of an instrument within a data network and the response of the controller.

Factory settings are shown **bold**.

Interface description B 70.3570.2 Interface description B 70.3560.2.1

8.1 Self-optimisation


Procedure

Self-optimisation SO establishes the optimum controller parameters for PID or PI controllers.

Depending on the controller type, the following controller parameters are defined:

Reset time (Tn1, Tn2), derivative time (Tv1, Tv2), proportional band (Xp1, Xp2), switching cycle time (Cy1, Cy2), filter time constant (dF)

The controller selects one of two procedures (**a** or **b**) in accordance with the size of the control deviation.

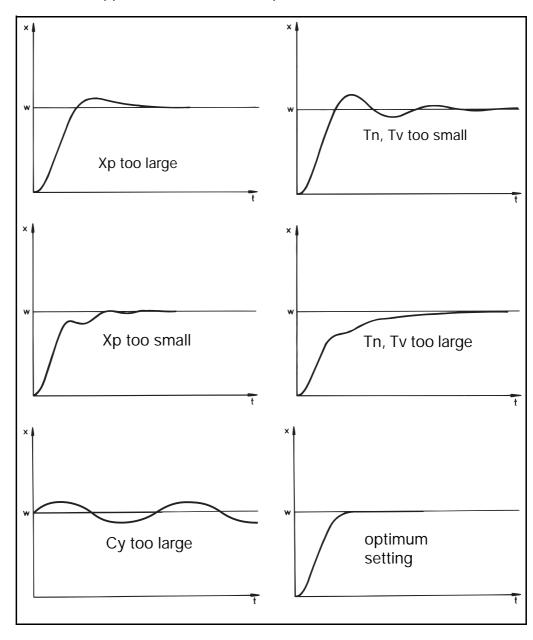
The types of the controller outputs have to be defined for self-optimisation.

⇒ Section 7.1 "Controller"

Start of selfoptimisation

Self-optimisation is automatically terminated, or can be cancelled.

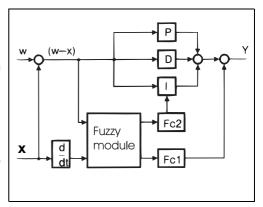
Starting self-optimisation is not possible with active level inhibit.


8.2 Checking the optimisation

Start-up procedure

The optimum adjustment of the controller to the process can be checked by recording the start-up with the control loop closed. The diagrams below indicate possible maladjustments and how these can be corrected.

Control response


The control response of a third-order control loop of a PID controller is shown as example. However, the procedure for adjusting the controller parameters can also be applied to other control loops.

8.3 Fuzzy parameters

In addition to the algorithms for the various controller structures, the controller software also includes a fuzzy module. This can be used to improve both the control and the disturbance response of controllers with I-action.

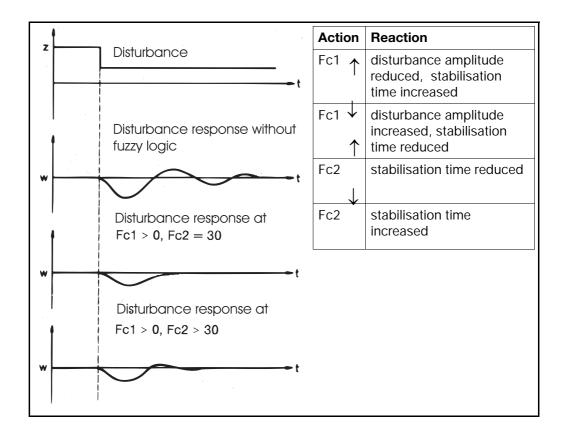
When the fuzzy module is activated, the output y is made up of the controller output and the output signal of the fuzzy module.

The parameter Fc1 affects the intensity of the fuzzy signal:

Fc1 = 0: Fuzzy module not activated 0<Fc1≤ 100: Fuzzy module activated

If the fuzzy module activated by Fc1 makes corrections to the output y, the reset time T_n is influenced during correction.

The parameter Fc2 is used to adjust the degree of influence on the reset time $T_{\rm n}$.


Fc2 = 0: no influence on T_n 0<Fc2 \le 100: influence on T_n

When supplied, and also after self-optimisation, the fuzzy parameters are set to Fc1 = 0 and Fc2 = 30.

The fuzzy module can be activated at any time by setting Fc1 > 0.

The setting Fc2 = 30 is suitable for many applications. The optimum setting can be determined with the aid of the table below.

8 Optimisation

If the fuzzy module is inactivated (Fc1=0), Fc2 is also ineffective

The action and sensitivity of the fuzzy parameters depend largely on the process to be controlled.

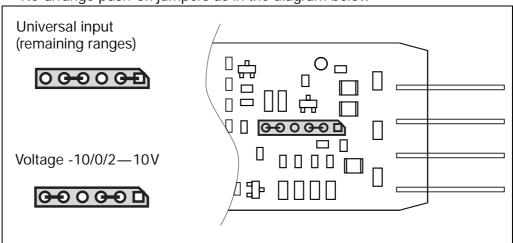
The influence is greater in the case of proportional controllers than with switching controllers.

The following steps are necessary for retrofitting cards:

Only qualified personnel are permitted to retrofit cards.

The cards can be damaged by electrostatic discharge. Avoid electrostatic charges during fitting and removal. Carry out the card change on a workbench which is earthed.

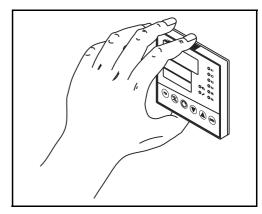
Identifying the card


* Identify the card by the sales no. that is glued onto the packaging.

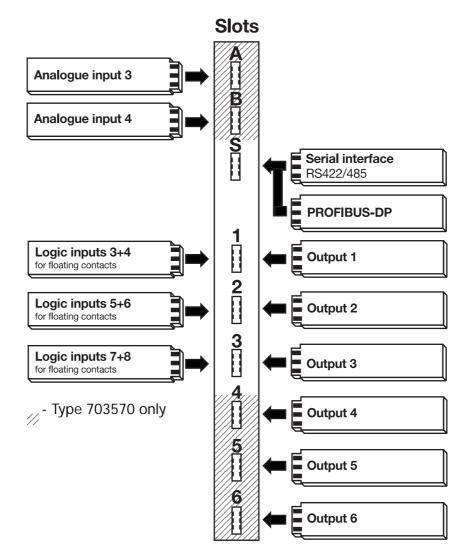
Cards	Code	Sales No.	Card No.
Analogue input 3 and 4: Universal input	1/2	70/00366099	358457
Outputs/logic inputs: Relay (changeover contact) Solid-state relay 230V 1A Logic 0/5V Logic 0/22V Analogue output Supply for 2-wire transmitter	1 2 3 4 5 6	70/00366100 70/00366101 70/00366102 70/00366103 70/00366104 70/00366105	358444 358452 358445 358447 358449 358447
Two logic inputs RS422/485 interface	54	70/00366107	358443
PROFIBUS-DP	64	70/00375280	368705

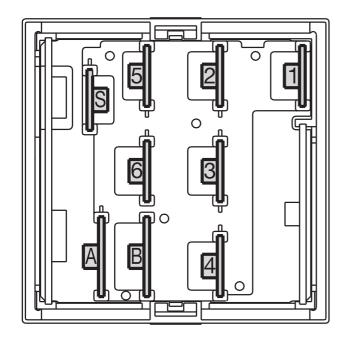
Configuring the analogue input

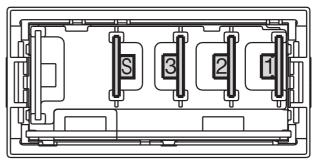
The analogue inputs are supplied ex-factory as universal inputs. They can be reconfigured to the standard signals -10/0/2—10V.


* Re-arrange push-on jumpers as in the diagram below

9 Retrofitting of cards

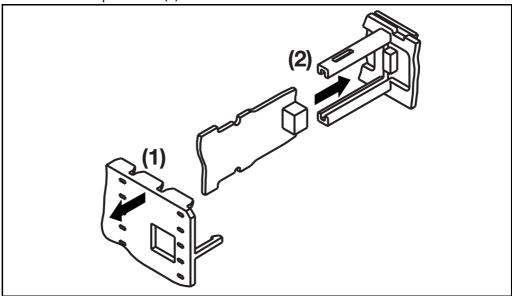

Removing the controller chassis


- * Pull off setup plug
- * Press together the knurled areas on the panel top and bottom (or left and right with landscape format) and pull out the controller chassis.



Assigning the slot

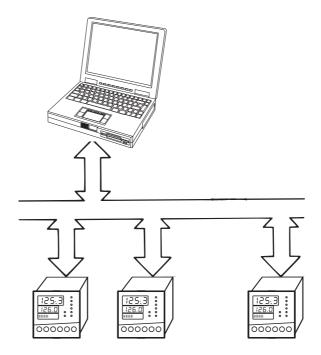
* Determine the corresponding slot for the card



Inserting the card

- * Pull off the guide plate (1)
- * Insert the card into the guide until the projections on the card snap into the notches provided (2).

Inserting the controller chassis


- * Fit on the guide plate
- * Push the controller chassis into the case until the lugs (underneath the knurled area) snap into place.

9 Retrotitting of cards	<u> </u>	

10.1 RS422/485 interface

The controller can be integrated into a data network via the interface. The following applications can be implemented, for example:

- process visualisation
- system control
- generating a report
- configuration

The bus system is designed on the master-slave principle. A master computer can address up to 31 controllers and instruments (slaves). The interface is a serial interface to the RS422 and RS485 standards.

The following data protocols are possible:

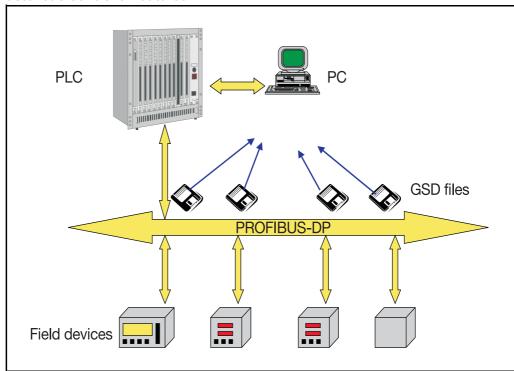
- MODbus/Jbus protocol

Interface description B70.3570.2

10 Interfaces

10.2 PROFIBUS-DP

Fieldbus


The controller can be incorporated into a fieldbus system according to the PROFIBUS-DP standard, via the PROFIBUS-DP interface. This PROFIBUS variant has been especially designed for the communication between automation systems and distributed peripheral devices at the fieldbus level, and is optimised for speed.

Data transmission

Data transmission is performed serially, according to the RS485 standard.

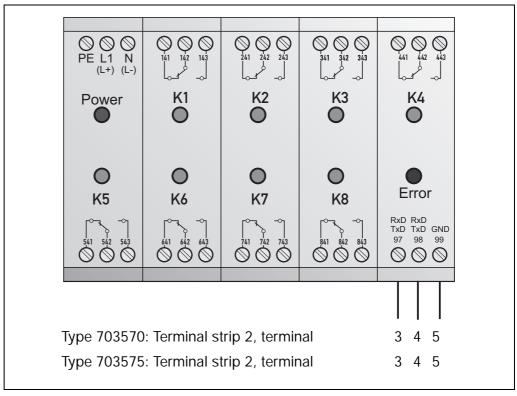
GSD generator

With the aid of the project design tool included in the delivery (GSD generator; GSD = Device Base Data), a standardised GSD file is created, which serves to integrate the controller into the fieldbus system, through the selection of characteristic controller features.

Interface description B 70.3560.2.1

11.1 External relay module ER8

Through the use of the external relay module ER8, the controller can be expanded by eight relay outputs (changeover contacts). Communication with the controller is via the RS422/485 interface. All signals for switching outputs can be produced. Configuration is via the setup program only.


⇒ Section 7.4 "Outputs"

If the relay module ER8 is connected to the interface, no further communication is possible via the interface.

Connection

The electrical connection is carried out like the connection to an RS485 interface.

Configuring the relay module

* Activate the relay module via the setup program

Edit → Settings only via setup → Expanded configuration

This activates the menu *Edit* → *External relay module*.

* Configure the relay module

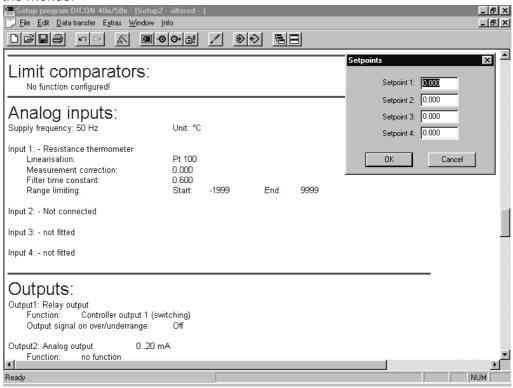
If the setup plug is connected to the controller, the relay module will not be operated and the relay contacts are de-energised.

11.2 Setup program with commissioning software

Setup program

A setup program for Windows® 95/98/NT4.0/2000 is available for easy configuration of the controller.

- CD-ROM


Hardware requirements:

- PC-486DX-2-100

- 16 Mbyte RAM - 1 free serial interface

- 15 Mbyte available on hard disk

The program shows the current configuration as a list in the background. The corresponding entry template is called up by double-clicking on the list, or via the menus.

Some controller functions can only be configured via the setup program:

- Customized linearisation (input of a linearisation table)
- Display brightness of display 3
- Switch off code request (extended configuration)
- Configure relay module
- Alter passwords

Commissioning software

The commissioning software is a part of the setup program and is available for adapting the controller to the control loop, optimally and conveniently.

Different process variables (e.g. setpoint, process value, control deviation, signals from the controller outputs) can be displayed graphically. The controller parameters can be altered and transferred to the controller via the setup/RS422/485 interface.

Data recording is limited to 48 hours.

12.1 Technical data

Thermocouple input

Designation			Range	Meas. accuracy	Ambient temperature error
Fe-Con	L		-200 +900°C	≤0.25%	100 ppm per °C
Fe-Con	J	EN 60 584	-200 +1200°C	≤0.25%	100 ppm per °C
Cu-Con	U		-200 +600°C	≤0.25%	100 ppm per °C
Cu-Con	Τ	EN 60 584	-200 +400°C	≤0.25%	100 ppm per °C
NiCr-Ni	Κ	EN 60 584	-200 +1372°C	≤0.25%	100 ppm per °C
NiCr-Con	Ε		-200 +1000°C	≤0.25%	100 ppm per °C
NiCrSi-NiSi	Ν	EN 60 584	-100 +1300°C	≤0.25%	100 ppm per °C
Pt10Rh-Pt	S	EN 60 584	0 — 1768°C	≤0.25%	100 ppm per °C
Pt13Rh-Pt	R	EN 60 584	0 — 1768°C	≤0.25%	100 ppm per °C
Pt30Rh-Pt6Rl	h B	EN 60 584	0 — 1820°C	≤0.25% ¹	100 ppm per °C
W5Re-W26Re	Э		0 — 2320 °C	≤0.25%	100 ppm per °C
W3Re-W25Re	Э		0 — 2400 °C	≤0.25%	100 ppm per °C
Cold junction			Pt10	0 internal, external or constant	•

^{1.} within range 300 — 1820°C

Resistance thermometer input

Designation		Type of connection	Range	Э	Meas. accuracy	Ambient temperature error
Pt100	EN 60 751	2-wire/3-wire	-200	+850°C	≤0.05%	50 ppm per °C
Pt 50,500, 1000	EN 60 751	2-wire/3-wire	-200	+850°C	≤0.1%	50 ppm per °C
KTY11-6		2-wire	-50	+150°C	≤1.0%	50 ppm per °C
PtK9		2-wire	lithium	n-chloride sens	sor	
Sensor lead resistance		max. 30Ω per conductor in 2-/3-wire circuit				
Measuring current		250μΑ				
Lead compensation		not required for 3-wire circuit. For 2-wire circuit, lead compensation can be provided in the software by process value correction.				

Input for standard signals

Designation	Range	Meas. accuracy	Ambient temperature error
Voltage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≤0.05% ≤0.05% ≤0.05% ≤0.05% ≤0.05%	100 ppm per °C 100 ppm per °C
Current	4 — 20mA, voltage drop ≤ 1V 0 — 20mA, voltage drop ≤ 1V	≤0.1% ≤0.1%	100 ppm per °C 100 ppm per °C
Heater current	0 — 50 mA AC	≤1%	100 ppm per °C
Potentiometer	min. 100 Ω , max. 10k Ω		

Measurement circuit monitoring¹

G					
Transducer	Over/underrange	Probe/lead short circuit ¹	Probe/lead break		
Thermocouple	•	-	•		
Resistance thermometer	•	•	•		
Voltage 2 — 10V 0 — 10V	:	•	•		
Current 4 — 20mA 0 — 20mA	:	•	•		
Potentiometer	min. 100Ω, max. 10kg	min. 100Ω , max. $10k\Omega$			

^{• =} recognised -= not recognised

Standard version

^{1.} In the event of an error, the outputs move to defined states (configurable).

12 Appendix

Outputs

Relay contact rating contact life contact protection circuit		changeover contact 3A at 250VAC resistive load 150 000 operations at rated load 56Ω/15nF between common-make/common-break		
Logic current limiting	0/5 V 20 mA	or	0/12 30mA	
Solid-state relay contact rating protection circuit		1A at 230V Varistor		
Voltage output signals load resistance		-10 to +10V / 0 — 10V / 2 — R _{load} 500Ω min.	- 10V	
Current output signals load resistance		-20 to +20mA / 0 — 20mA / 4 - R _{load} 450Ω max.	— 20mA	
Supply for 2-wire transmitter voltage current		22V 30mA		

Controller

Controller type	Single-setpoint controller,		
	double-setpoint controller, modulating controller, proportional controller,		
	proportional controller with integral actuator driver		
Controller structures	P/PD/PI/PID/I		
A/D converter	resolution better than 15 bit		
Sampling time	210 msec		

Electrical data

Supply (switched mode power supply)	110 — 240V -15/+10% AC 48 — 63Hz		
	20 — 30V DC/AC 48 — 63Hz		
Test voltages (type test)	to EN 61 010, Part 1		
	overvoltage category II, pollution degree 2		
Power consumption	24VA max. for Type 703570		
	14 VA max. for Type 703575		
Data backup	EEPROM		
Electrical connection	at the rear via screw terminals,		
	conductor cross-section up to 2.5 mm ²		
	and core-end sleeve (length: 10mm)		
Electromagnetic compatibility	EN 61 326		
Interference emission	Class A		
Immunity to interference	Industrial requirements		
Safety standards	to EN 61 730-1 for Type 703570		
	to EN 61 010-1 for Type 703575		

Housing

Housing type	plastic housing for panel mounting to DIN 43 700			
Туре	703575/1	703575/2	703570/0	
Bezel in mm	48 x 96 (portrait)	96 x 48 (landscape)	96 x 96	
Depth behind panel in mm	130	130	130	
Panel cut-out in mm	45 ^{+0.6} x 92 ^{+0.8}	92 ^{+0.8} x 45 ^{+0.6}	92 ^{+0.8} x 92 ^{+0.8}	
Ambient/storage temperature range	-5 to 55°C / -40 to +70°C			
Climatic conditions	rel. humidity not exceeding 95% annual mean, no condensation			
Operating position	unrestricted			
Protection	rotection to EN 60 529, front IP65, rear IP20			
Weight (fully fitted)	approx. 420g	approx. 420g	approx. 730g	

Standard version

12.2 Alarm messages and display priorities in the normal display

rity	Display		Possible error/	Assignment	Error handling		
	Matrix	7-segment	notes		check/repair/replacement		
igh	+LEDs	8888. (blinks)	watchdog or power-on will trigger initialisation (reset)	controller	replace controller when initialisation is longer than 5sec		
	(no display)	(no display)	logic function "All displays off" is configured and activecontroller faultysupply faulty	- no error - controller - supply	open logic inputreplace controllercheck supply		
	BREAK E1 BREAK E4	9999. (blinks) or ()*	- probe/lead break of resistance thermometer (connection 1.9, 1.11, 1.4, 1.8, 2.10, 2.12, 3.20, 3.12) or standard-signal input - probe/lead short-circuit at standard-signal input - overrange at standard-signal input - underrange at standard-signal input	external signal generator	- check probe for break or short-circuit - check probe connection and terminals - check lead		
	ORANGE 1 ORANGE 4 URANGE 1 URANGE 4	9999. (blinks) or ()* - 1999. (blinks) or ()*	- overrange of resistance thermometer and thermocouple input - probe/lead break of thermocouple input - underrange of resistance thermometer and thermocouple input - probe/lead short-circuit of resistance thermometer - probe/lead break of resistance thermometer 1.10, 1.7, 2.11, 3.11	external signal generator	- is the medium to be measured within the measuring range (too hot - too cold?) - check probe for break and shor circuit - check probe connection and terminals - check lead		
	ORANGEMI ORANGEMI URANGEMI URANGEMI	()*	overrange (maths module) (calculation result > range end) underrange (maths module) (calculation result < range start)				
	MATH1 ERR MATH2 ERR	()*	mathematical error (violation of mathematical rules; impermissible values)	controller	check maths formulae		
	LOG1 ERR	()*	logic error (violation of mathematical rules)	controller	check logic formulae		
	ERS ERR	()*	error on relay module (not applicable with GL approval)	-	-		
	BUSERROR	()*	no communication	periphery	check periphery		
	(Text) (Text)	()*	text display (logic input 1) text display (logic input 8)	-	-		
	(Text)	()*	text display (limit comparator 1)	_	-		
	 (Text)		text display (limit comparator 8)				
	(Text)	()*	text display (logic 1)	-	-		
	(Text)	()*	text display (logic 2)	_	_		

12 Appendix

Priority	• •		Possible error /	Assignment	Error handling	
	Matrix	7-segment	notes		check/repair/replacement	
high	SOACTIVE	()*	self-optimisation has been activated	-	-	
			measurement input not available	controller	- configure measurement input	
		or ()*	or not configured		- retrofit card	
low	(display according to configuration)		-	-	-	
	* display according to	configuration				

Acknowledging alarm messages
On pressing the ENTER key, the message disappears.

Table: Assignment of the measurement inputs/response of the outputs in the event of an error (to be filled in by the user)

		Measurement input	nput		Respon	se of the outpu	Response of the outputs in the event of error	t of error	
No. Transdu- Me cer ran	Me	Measuring range	Measurement site	Output 1	Output 2	Output 3	Output 4	Output 5	Output 6
Example:									
Pt100		20—500°C	Machinery room boiler temperature 1	Output 100%		Limit com- parator off			
	4								

12 Appendix

12.3 Character set for matrix display

The special characters for text entries in the setup program are shown below. They are entered from the keys using the key combination Alt + XXX

0	32		64	@	96	`	128	Ç	160	á	192	224	α
1	33	!	65	Α	97	а	129	ü	161	í	193	225	β
2	34	u	66	В	98	b	130	é	162	ó	194	226	Γ
3	35	#	67	С	99	С	131	â	163	ú	195	227	П
4	36	\$	68	D	100	d	132	ä	164	ñ	196	228	Σ
5	37	%	69	Ε	101	е	133	à	165	Ñ	197	229	σ
6	38	&	70	F	102	f	134	å	166		198	230	μ
7	39	•	71	G	103	g	135	Ç	167		199	231	γ
8	40	(72	Н	104	h	136	ê	168	Ċ	200	232	ф
9	41)	73	1	105	i	137	ë	169		201	233	θ
10 ·	42	*	74	J	106	j	138	è	170		202	234	Ω
11	43	+	75	K	107	k	139	ï	171		203	235	δ
12	44	,	76	L	108	1	140	î	172		204	236	∞
13	45	-	77	M	109	m	141	ì	173		205	237	Ø
14	46	•	78	Ν	110	n	142	Ä	174		206	238	€
15	47	1	79	0	111	0	143	Å	175		207	239	\cap
16	48	0	80	Р	112	р	144	É	176		208	240	
17	49	1	81	Q	113	q	145	æ	177		209	241	
18	50	2	82	R	114	r	146	Æ	178		210	242	
19	51	3	83	S	115	s	147	ô	179		211	243	
20	52	4	84	T	116	t	148	Ö	180		212	244	
21	53	5	85	U	117	u	149	ò	181		213	245	
22	54	6	86	٧	118	V	150	û	182		214	246	
23	55	7	87	W	119	W	151	ù	183		215	247	
24	56	8	88	X	120	X	152	ÿ	184		216	248	0
25	57	9	89	Υ	121	У	153	Ö	185		217	249	•
26	58	:	90	Z	122	Z	154	Ü	186		218	250	
27	59	;	91	[123	{	155	¢	187		219	251	
28	60	<	92	١	124		156	£	188		220	252	
29	61	=	93]	125	}	157	¥	189		221	253	
30	62	>	94	^	126	~	158		190		222	254	
31	63	?	95		127		159		191		223	255	

200 — 210 reserved for bar graph display

12.4 Instrument features (configuration level 2)

The software version and the hardware features of the process controller are shown here

COMF 2

	Parameters	Value/selection	Description
Version	→VERSION	50.0%.0%	version number
VDN number	→VDN NO.	STANDARD XXX.XXXX	standard version VDN number
			(alteration to the standard version)
Analogue input 3 Analogue input 4	→IN∃ →IN4	NO YES	not available available universal input
Analogue inp. 1 10V Analogue inp. 2 10V Analogue inp. 3 10V Analogue inp. 4 10V		NO YES	not available available voltage input -10/0/2 — 10V
Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6	→OUTPUT1 →OUTPUT2 →OUTPUT3 →OUTPUT4 →OUTPUT5 →OUTPUT6	MO RELAY SSRELAY ANOUTPUT LOGIC SV OUTP 22V	not available relay solid-state relay analogue output logic output 5V logic output 22V or voltage output for 2-wire transmitter two logic inputs
Setup interface	SETUP	NO YES	not connected connected
Interface	INTERFCE	MO RS422/485 PROFIBUS	not available RS 422/485 PROFIBUS-DP
Mathematics	MATHLOG	NO YES	not available available

12.5 Notes for instruments with Germanischer Lloyd (GL) approval

The information below is intended to supplement or replace the details that have already been given.

12.5.1 Technical data

Ambient conditions according to application category C for enclosed areas

Temperature	-5 to 55°C
Relative humidity	≤100% r. h.
Vibration	≤0.7g

Electromagnetic compatibility

The electromagnetic compatibility corresponds to the GL guidelines for type examinations (10.97).

12.5.2 Alarm messages

⇒ Section 12.2

12.5.3 Inhibits

All levels are inhibited by codes. Alterations, whether accidental or deliberate, cannot be made easily. The operating level is not inhibited by a code. In this case, it is possible to lock the entire keypad via a logic contact (e.g. keyswitch).

⇒ Section 5.3

12.5.4 Manual mode

⇒ Section 5.6

Manual mode is only possible with a fully operational instrument!

12.5.5 Additional notes

If servicing is required, the instrument has to be sent back to the main factory.

In accordance with the regulations of the Germanischer Lloyd, certain applications require the availability of a reserve instrument.

The instrument can only be used with restrictions on the bridge, since a continuous dimming of the display brightness is not possible!

it is recommended that a print-out of the setup program be kept on site, together with the technical documentation for the controller (can be requested, if necessary).

12 Appendix

Α

Accessories 10
Action 38
Alarm messages 73
Analogue input 9, 40
configuring 63
Approvals 9

B

Basic type extension 9

C

Card
identifying 63
retrofitting 63
Code request 25
Cold-junction temperature
constant 42
external 42
Configuration level 1 25
Configuration level 2 25
Connection diagrams 16–20
Control direction 35
Controller 35
Controller chassis, removal of 14
Controller type 35

D

Data format 58
Deadband 36
Decimal point
shift 26
Dimensions 11–12
Display 53
Display end 42
Display start 42
Display switching 29
automatic 53
Displays and controls 23

Ε

Edge-to edge mounting 13 End value for analogue signals 46 External relay module 69

F

Filter time constant 43
Fitting in position 13
Formula input 50

Front panel, cleaning of 13 Fuzzy control 36

Н

Heater current monitoring 42 Humidity control 49

I

Inputs 40 of controller 35 Installation notes 15 Instrument name 55 Interface 9 Isolation 21

K

Key designation 23

L

Levels and menus 26
Limit comparator 37
absolute 39
relative 39
Limit comparator functions 37
Limit value 38
Linearisation 41, 49
Logic formula 52
Logic functions 56
combined 57
Logic input 56

M

Manual mode 28, 36
Manual output 36
Mathematical formula 50
Maths and logic module 9, 48
Measurement circuit monitoring 71
Measurement correction 41

N

Normal display 25

0

Operating level 25, 30 Operating modes 24 Optimisation 60 Output 9, 45 self-optimisation 36

13 Index

P

Parameter level 25, 31

Parameter set
 active 32

Profile program
 holding 47
 starting 47

Profile program function 25, 46–47

Protocol type 58

Pulse function 38

R

Ramp function 46–47
Ramp slope 46
Range end 42, 48
Range start 42, 48
Ratio control 49
Recalibration
customized 43
Response time
minimum 58

S

Selection 27
Self-optimisation 59
Setpoint
altering 27
Setpoint limits 36
Setpoint switching 27

Supply frequency 40 Switching action 56 Switching differential 38 Switch-on delay 38

T

Technical data 71
Time 48
Time input 27
Time-out 25, 53
Transducer 40
Type designation 9

U

Unit 40 of slope 46 Unit address 58

V

Value input 26 Variable a 48 Variable b 48

Z

Zero for analogue signals 46

TEMATEC Löbach GmbH

 Postadresse:
 Hausadresse:
 Telefon (+49) 0 22 42-8703-0

 Postfach 1261
 Löhestr. 37
 Telefax (+49) 0 22 42-8703-20

http://www.tematec.de 53759 Hennef 53773 Hennef e-mail: team@tematec.de